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SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR SCHEDULING
TASKS ASSOCIATED WITH CONTINUATION
THREAD BLOCKS

This invention was made with Government support under
LLNS subcontract B599861 awarded by DOE. The Govern-
ment has certain rights in this invention.

FIELD OF THE INVENTION

The present invention relates to task management, and
more particularly to hardware and software scheduling
mechanisms for tasks associated with continuation thread
blocks.

BACKGROUND

Programming tasks are typically implemented by generat-
ing a data structure in a memory that includes information
associated with instructions and data to be processed by those
instructions. Some tasks may be configured to launch child
tasks that complete auxiliary work related to the task. The task
may be stalled while the child work is completed. The task
saves the state related to the task, which may be restored at
some point in the future once the child task has completed the
auxiliary work.

However, conventional mechanisms associated with
related tasks are not efficient at avoiding deadlock conditions.
Sometimes, too many child threads may be launched such
that resources are starved that don’t allow child tasks to finish
executing. Too many thread blocks may be active and resident
in the processor, causing the active tasks to stall on comple-
tion of the child tasks, which in turn cannot be executed
because the active tasks have locked all available resources.
Thus, there is a need for addressing this issue and/or other
issues associated with the prior art.

SUMMARY

A system, method, and computer program product for
scheduling tasks associated with continuation thread blocks
is described. The method includes the steps of generating a
first task metadata data structure in a memory, generating a
second task metadata data structure in the memory, executing
a first task corresponding to the first task metadata data struc-
ture in a processor, generating state information representing
a continuation task related to the first task and storing the state
information in the second task metadata data structure,
executing the continuation task in the processor after the one
or more child tasks have finished execution, and indicating
that the first task has logically finished execution once the
continuation task has finished execution. The second task
metadata data structure is related to the first task metadata
data structure, and at least one instruction in the first task
causes one or more child tasks to be executed by the proces-
sor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a flowchart of a method for writing task
metadata to a memory, in accordance with one embodiment;

FIG. 2 illustrates a parallel processing unit, according to
one embodiment;

FIG. 3 illustrates the streaming multi-processor of FIG. 2,
according to one embodiment;
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FIG. 4 illustrates a task metadata data structure, in accor-
dance with one embodiment;

FIG. 5A illustrates a technique for scheduling tasks asso-
ciated with a continuation thread block, in accordance with
one embodiment;

FIG. 5B illustrates a set of child tasks launched by the
threads of a parent task, in accordance with one embodiment;

FIG. 5C illustrates a mechanism for signaling the comple-
tion of all child tasks, in accordance with one embodiment;

FIGS. 6A and 6B illustrate a flowchart of a method for
scheduling tasks associated with continuation thread blocks,
in accordance with another embodiment; and

FIG. 7 illustrates an exemplary system in which the various
architecture and/or functionality of the various previous
embodiments may be implemented.

DETAILED DESCRIPTION

A hardware scheduling mechanism for a multi-threaded
processor is described below. The hardware scheduling
mechanism provides a means to implement task scheduling,
including out-of-order execution of tasks, prioritization of
tasks, and pre-emption of tasks. A task is associated with a
task metadata data structure that encapsulates the task state
necessary for configuring a processing unit to complete some
subset of work (i.e., a program kernel configured to process
data). In one embodiment, a central processing unit (CPU) is
coupled to a parallel processing unit (PPU) and the PPU is
configured to execute one or more tasks. The tasks are written
to a memory accessible by the PPU by either a device driver
executing on the CPU or predecessor tasks executed on the
PPU. In order to launch a task on the PPU, a method call is
sent to the PPU that points to a task metadata data structure in
the memory. The PPU then loads the task state defined by the
task metadata data structure from the memory and launches
the task on a processing unit of the PPU.

FIG. 1 illustrates a flowchart of a method 100 for schedul-
ing tasks associated with continuation thread blocks, in accor-
dance with one embodiment. At step 102, a first task metadata
data structure is generated in a memory. A task data structure
comprises a plurality of bits representing one or more fields
that encapsulate state information relating to a task. At step
104, a second task metadata data structure is generated in the
memory. The second task metadata data structure is related to
the first task metadata data structure and can store state infor-
mation for one or more continuation thread blocks associated
with a continuation task. A continuation task represents work
comprising one or more instructions that are dependent on at
least one intermediate value generated by one or more child
tasks launched by the first task (i.e., the parent task). At step
106, the first task is executed in a processor. The state infor-
mation utilized to launch the first task is stored in the first task
metadata data structure.

At step 108, state information representing a continuation
task is generated in the memory and stored in the second task
metadata data structure. At step 110, the continuation task is
executed by the processor after the one or more child tasks
have finished execution. At step 112, once the continuation
task has finished executing, state information in the first task
metadata data structure is modified to indicate that the first
task has logically finished execution.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing framework may or may not be implemented, per
the desires of the user. It should be strongly noted that the
following information is set forth for illustrative purposes and
should not be construed as limiting in any manner. Any of the
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following features may be optionally incorporated with or
without the exclusion of other features described.

FIG. 2 illustrates a parallel processing unit (PPU) 200,
according to one embodiment. While a parallel processor is
provided herein as an example of the PPU 200, it should be
strongly noted that such processor is set forth for illustrative
purposes only, and any processor may be employed to supple-
ment and/or substitute for the same. In one embodiment, the
PPU 200 is configured to execute a plurality of threads con-
currently in two or more streaming multi-processors (SMs)
250. A thread (i.e., a thread of execution) is an instantiation of
a set of instructions executing within a particular SM 250.
Each SM 250, described below in more detail in conjunction
with FIG. 3, may include, but is not limited to, one or more
processing cores, one or more load/store units (LSUs), a
level-one (L.1) cache, shared memory, and the like.

In one embodiment, the PPU 200 includes an input/output
(I/O) unit 205 configured to transmit and receive communi-
cations (i.e., commands, data, etc.) from a central processing
unit (CPU) (not shown) over the system bus 202. The I/O unit
205 may implement a Peripheral Component Interconnect
Express (PCle) interface for communications over a PCle
bus. In alternative embodiments, the [/O unit 205 may imple-
ment other types of well-known bus interfaces.

The PPU 200 also includes a host interface unit 210 that
decodes the commands and transmits the commands to the
task management unit 215 or other units of the PPU 200 (e.g.,
memory interface 280) as the commands may specify. The
host interface unit 210 is configured to route communications
between and among the various logical units of the PPU 200.

In one embodiment, a program encoded as a command
stream is written to a buffer by the CPU. The buffer is a region
in memory, e.g., memory 204 or system memory, that is
accessible (i.e., read/write) by both the CPU and the PPU 200.
The CPU writes the command stream to the buffer and then
transmits a pointer to the start of the command stream to the
PPU 200. The host interface unit 210 provides the task man-
agement unit (TMU) 215 with pointers to one or more
streams. The TMU 215 selects one or more streams and is
configured to organize the selected streams as a pool of pend-
ing grids. The pool of pending grids may include new grids
that have not yet been selected for execution and grids that
have been partially executed and have been suspended.

A work distribution unit 220 that is coupled between the
TMU 215 and the SMs 250 manages a pool of active grids,
selecting and dispatching active grids for execution by the
SMs 250. Pending grids are transferred to the active grid pool
by the TMU 215 when a pending grid is eligible to execute,
i.e., has no unresolved data dependencies. An active grid is
transferred to the pending pool when execution of the active
grid is blocked by a dependency. When execution of a grid is
completed, the grid is removed from the active grid pool by
the work distribution unit 220. In addition to receiving grids
from the host interface unit 210 and the work distribution unit
220, the TMU 215 also receives grids that are dynamically
generated by the SMs 250 during execution of a grid. These
dynamically generated grids join the other pending grids in
the pending grid pool.

In one embodiment, the CPU executes a driver kernel that
implements an application programming interface (API) that
enables one or more applications executing on the CPU to
schedule operations for execution on the PPU 200. An appli-
cation may include instructions (i.e., API calls) that cause the
driver kernel to generate one or more grids for execution. In
one embodiment, the PPU 200 implements a SIMD (Single-
Instruction, Multiple-Data) architecture where each thread
block (i.e., warp) in a grid is concurrently executed on a
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different data set by different threads in the thread block. The
driver kernel defines thread blocks that are comprised of k
related threads, such that threads in the same thread block
may exchange data through shared memory. In one embodi-
ment, a thread block comprises 32 related threads and a grid
is an array of one or more thread blocks that execute the same
stream and the different thread blocks may exchange data
through global memory. A thread block may also be referred
to as a cooperative thread array (CTA).

In one embodiment, the PPU 200 comprises X SMs 250
(X). For example, the PPU 200 may include 15 distinct SMs
250. Each SM 250 is multi-threaded and configured to
execute a plurality of threads (e.g., 32 threads) from a par-
ticular thread block concurrently. Each of the SMs 250 is
connected to a level-two (1.2) cache 265 via a crossbar 260 (or
other type of interconnect network). The [.2 cache 265 is
connected to one or more memory interfaces 280. Memory
interfaces 280 implement 16, 32, 64, 128-bit data buses, or the
like, for high-speed data transfer. In one embodiment, the
PPU 200 comprises U memory interfaces 280(U), where each
memory interface 280(U) is connected to a corresponding
memory device 204(U). For example, PPU 200 may be con-
nected to up to 6 memory devices 204, such as graphics
double-data-rate, version 5, synchronous dynamic random
access memory (GDDRS SDRAM).

In one embodiment, the PPU 200 implements a multi-level
memory hierarchy. The memory 204 is located off-chip in
SDRAM coupled to the PPU 200. Data from the memory 204
may be fetched and stored in the L2 cache 265, which is
located on-chip and is shared between the various SMs 250.
In one embodiment, each of the SMs 250 also implements an
L1 cache. The L1 cache is private memory that is dedicated to
a particular SM 250. Each of the L1 caches is coupled to the
shared L2 cache 265. Data from the .2 cache 265 may be
fetched and stored in each of the L1 caches for processing in
the functional units of the SMs 250.

In one embodiment, the PPU 200 comprises a graphics
processing unit (GPU). The PPU 200 is configured to receive
commands that specify shader programs for processing
graphics data. Graphics data may be defined as a set of primi-
tives such as points, lines, triangles, quads, triangle strips, and
the like. Typically, a primitive includes data that specifies a
number of vertices for the primitive (e.g., in a model-space
coordinate system) as well as attributes associated with each
vertex of the primitive. The PPU 200 can be configured to
process the graphics primitives to generate a frame buffer
(i.e., pixel data for each of the pixels of the display). The
driver kernel implements a graphics processing pipeline, such
as the graphics processing pipeline defined by the OpenGL
APL

An application writes model data for a scene (i.e., a col-
lection of vertices and attributes) to memory. The model data
defines each of the objects that may be visible on a display.
The application then makes an API call to the driver kernel
that requests the model data to be rendered and displayed. The
driver kernel reads the model data and writes commands to
the buffer to perform one or more operations to process the
model data. The commands may encode different shader
programs including one or more of a vertex shader, hull
shader, geometry shader, pixel shader, etc. For example, the
TMU 215 may configure one or more SMs 250 to execute a
vertex shader program that processes a number of vertices
defined by the model data. In one embodiment, the TMU 215
may configure different SMs 250 to execute different shader
programs concurrently. For example, a first subset of SMs
250 may be configured to execute a vertex shader program
while a second subset of SMs 250 may be configured to
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execute a pixel shader program. The first subset of SMs 250
processes vertex data to produce processed vertex data and
writes the processed vertex data to the L2 cache 265 and/or
the memory 204. After the processed vertex data is rasterized
(i.e., transformed from three-dimensional data into two-di-
mensional data in screen space) to produce fragment data, the
second subset of SMs 250 executes a pixel shader to produce
processed fragment data, which is then blended with other
processed fragment data and written to the frame buffer in
memory 204. The vertex shader program and pixel shader
program may execute concurrently, processing different data
from the same scene in a pipelined fashion until all of the
model data for the scene has been rendered to the frame
buffer. Then, the contents of the frame buffer are transmitted
to a display controller for display on a display device.

The PPU 200 may be included in a desktop computer, a
laptop computer, a tablet computer, a smart-phone (e.g., a
wireless, hand-held device), personal digital assistant (PDA),
a digital camera, a hand-held electronic device, and the like.
In one embodiment, the PPU 200 is embodied on a single
semiconductor substrate. In another embodiment, the PPU
200 is included in a system-on-a-chip (SoC) along with one or
more other logic units such as a reduced instruction set com-
puter (RISC) CPU, a memory management unit (MMU), a
digital-to-analog converter (DAC), and the like.

In one embodiment, the PPU 200 may be included on a
graphics card that includes one or more memory devices 204
such as GDDRS SDRAM. The graphics card may be config-
ured to interface with a PCle slot on a motherboard of a
desktop computer that includes, e.g., a northbridge chipset
and a southbridge chipset. In yet another embodiment, the
PPU 200 may be an integrated graphics processing unit
(1GPU) included in the chipset (i.e., Northbridge) of the
motherboard.

FIG. 3 illustrates the streaming multi-processor 250 of
FIG. 2, according to one embodiment. As shown in FIG. 3, the
SM 250 includes an instruction cache 305, one or more sched-
uler units 310, a register file 320, one or more processing
cores 350, one or more double precision units (DPUs) 351,
one or more special function units (SFUs) 352, one or more
load/store units (LSUs) 353, an interconnect network 380, a
shared memory/L.1 cache 370, and one or more texture units
390.

As described above, the work distribution unit 220 dis-
patches active grids for execution on one or more SMs 250 of
the PPU 200. The scheduler unit 310 receives the grids from
the work distribution unit 220 and manages instruction sched-
uling for one or more thread blocks of each active grid. The
scheduler unit 310 schedules threads for execution in groups
of parallel threads, where each group is called a warp. In one
embodiment, each warp includes 32 threads. The scheduler
unit 310 may manage a plurality of different thread blocks,
allocating the thread blocks to warps for execution and then
scheduling instructions from the plurality of different warps
on the various functional units (i.e., cores 350, DPUs 351,
SFUs 352, and L.SUs 353) during each clock cycle.

In one embodiment, each scheduler unit 310 includes one
ormore instruction dispatch units 315. Each dispatch unit 315
is configured to transmit instructions to one or more of the
functional units. In the embodiment shown in FIG. 3, the
scheduler unit 310 includes two dispatch units 315 that enable
two different instructions from the same warp to be dis-
patched during each clock cycle. In alternative embodiments,
each scheduler unit 310 may include a single dispatch unit
315 or additional dispatch units 315.

Each SM 250 includes a register file 320 that provides a set
of registers for the functional units of the SM 250. In one
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embodiment, the register file 320 is divided between each of
the functional units such that each functional unit is allocated
a dedicated portion of the register file 320. In another embodi-
ment, the register file 320 is divided between the different
warps being executed by the SM 250. The register file 320
provides temporary storage for operands connected to the
data paths of the functional units.

Each SM 250 comprises L processing cores 350. In one
embodiment, the SM 250 includes a large number (e.g., 192,
etc.) of distinct processing cores 350. Each core 350 is a
fully-pipelined, single-precision processing unit that includes
afloating point arithmetic logic unit and an integer arithmetic
logic unit. In one embodiment, the floating point arithmetic
logic units implement the IEEE 754-2008 standard for float-
ing point arithmetic. Each SM 250 also comprises M DPUs
351 that implement double-precision floating point arith-
metic, N SFUs 352 that perform special functions (e.g., copy
rectangle, pixel blending operations, and the like), and P
LSUs 353 that implement load and store operations between
the shared memory/L.1 cache 370 and the register file 320. In
one embodiment, the SM 250 includes 64 DPUs 351, 32
SFUs 352, and 32 LSUs 353.

Each SM 250 includes an interconnect network 380 that
connects each of the functional units to the register file 320
and the shared memory/L.1 cache 370. In one embodiment,
the interconnect network 380 is a crossbar that can be con-
figured to connect any of the functional units to any of the
registers in the register file 320 or the memory locations in
shared memory/L.1 cache 370.

In one embodiment, the SM 250 is implemented within a
GPU. In such an embodiment, the SM 250 comprises J texture
units 390. The texture units 390 are configured to load texture
maps (i.e., a 2D array of texels) from the memory 204 and
sample the texture maps to produce sampled texture values
for use in shader programs. The texture units 390 implement
texture operations such as anti-aliasing operations using mip-
maps (i.e., texture maps of varying levels of detail). In one
embodiment, the SM 250 includes 16 texture units 390.

The PPU 200 described above may be configured to per-
form highly parallel computations much faster than conven-
tional CPUs. Parallel computing has advantages in graphics
processing, data compression, biometrics, stream processing
algorithms, and the like.

Task Management Unit

FIG. 4 illustrates a task metadata (TMD) 400 data struc-
ture, in accordance with one embodiment. The TMD 400
includes a plurality of fields that encapsulate task state infor-
mation associated with a task. In one embodiment, the TMD
400 includes a program offset field 410, a grid dimensions
field 420, a block dimensions field 430, a resources field 440,
a cache control field 450, a memory barriers field 460, a
semaphores field 470, a pending counter field 480, and an
output dependence field 490. Although not shown, the TMD
400 may include other fields in addition to the fields shown in
FIG. 4. It will be appreciated that the TMD 400 shown in FIG.
4 is for illustrative purposes only. The particular fields
included in the TMD 400 encapsulate the task state required
to configure a processing unit (e.g., the SM 250) to execute
the task. Consequently, when a TMD 400 is implemented for
different architectures, the corresponding TMD 400 may
include fields in addition to or in lieu of the fields shown in
FIG. 4.

In one embodiment, the program offset field 410 stores a
memory offset for the start of program instructions for the
task. The grid dimensions field 420 includes grid dimensions
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for the grid. A grid is an array of thread blocks generated to
implement the program specified by the program offset field
410 on different sets of input data (e.g., pixel data) corre-
sponding to each thread. The grid may be one-dimensional,
two-dimensional, three-dimensional, or n-dimensional. In
one embodiment, the grid dimensions field 420 includes an
x-dimension, a y-dimension, and a z-dimension for the size of
a three-dimensional grid array. The block dimensions field
430 stores the dimension for each of the thread blocks and is
equal to the number of threads included in each thread block
(e.g., 32). The resources field 440 includes state information
related to hardware resources allocated to the task. For
example, the resources field 440 may include a location and
size of a circular queue, implemented in a memory, that stores
thread blocks to be added to the task. The cache control field
450 includes data associated with configuring the cache. For
example, the cache control field 450 may include data that
specifies what portion of the L1 cache/shared memory 270 is
configured as a cache and what portion is configured as a
shared memory. The cache control field 450 may also specity
how much memory is allocated to each thread in a thread
block. The memory barriers field 460 may include counters
that are configured to manage task dependency. Similarly, the
semaphores field 470 may include pointers to semaphores
that should be released when a task is completed.

The TMD 400 defines, in the memory 204, the encapsu-
lated state information necessary to execute a particular task
on a processing unit of the PPU 200. In other words, the TMD
400 may be generated in the memory 204 and the fields of the
TMD 400 may be filled by software, either a device driver or
application executing on the CPU or a different task executing
on the PPU 200, and then a pointer to the TMD 400 is passed
to the TMU 215 in the PPU 200 to indicate that the task is
ready to be scheduled. In some system implementations, the
TMD 400 for a task is written into a system memory (i.e., a
memory associated with the CPU) and then copied to a video
memory (i.e., memory 204). One mechanism for copying the
task to the video memory involves transmitting packets of
data from the system memory to the PPU 200 via the system
bus 202. The PPU 200 then uses various hardware engines to
store the data in the video memory. Once the PPU 200 is ready
to schedule the task, the TMD 400 (or at least portions of the
TMD 400) is read from the video memory into on-chip
memory structures accessible by the TMU 215 and/or the
SMs 250.

In one embodiment, the TMD 400 includes a pending
counter field 480. The pending counter field 480 holds an
integer value that indicates how many other pending actions
must be completed before the task associated with the TMD
400 is logically complete. In other words, another related task
may be executing that prevents the task associated with the
TMD 400 from finishing. When a TMD 400 is initiated, the
pending counter field 480 may be initially set to one (1) that
indicates that the TMD 400 will be logically complete when
the grid of CTAs associated with the task corresponding to the
TMD 400 has finished executing. In modern parallel process-
ing architectures, tasks executing on the processor may be
able to spawn one or more child tasks. For example, instruc-
tions in a CTA referenced by the TMD 400 may generate a
new TMD corresponding to a child task in the memory 204.
The child task may generate, e.g., an intermediate value for
use by one or more instructions in the CTA referenced by the
TMD 400. For example, the child task may sample an image
to find an average value for the pixel colors in the image. The
parent task may use this intermediate value for another cal-
culation. The parent task may execute up to a point where the
intermediate value is going to be calculated by a child task.
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The parent task then generates a TMD 400 in memory 204
corresponding to the child task and launches the child task.
The parent task may then increment the pending counter field
480 to indicate that the child task needs to finish as well as the
parent task before the parent task is logically complete. The
parent task may then be evicted from the processor until the
child task has finished executing. Once the child task has
finished executing, the pending counter field 480 of the TMD
400 is decremented to indicate that the child task has finished
and the parent task can then logically finish once any other
instructions or child tasks have completed execution. A more
detailed explanation of the use of the pending counter field
480 in relation to generating new tasks is set forth below in
conjunction with FIGS. 5A through 5C.

As shown in FIG. 4, the TMD 400 may also include an
output dependence field 490. The output dependence field
490 is a pointer to a TMD 400 for a different task that is
dependent on the completion of the task associated with the
TMD 400 for execution. In one embodiment, the TMU 215 is
configured to decrement a reference counter field (not explic-
itly shown in FIG. 4) that indicates whether the task corre-
sponding to the TMD 400 is dependent on the completion of
any predecessor tasks before the task may be executed. Once
the reference counter field in the TMD 400 is decremented to
zero (0), then the task may be scheduled and launched by the
TMU 215 and the WDU 220, respectively.

FIG. 5A illustrates a technique for scheduling tasks asso-
ciated with a continuation thread block, in accordance with
one embodiment. As shown in FIG. 5A, a task may be initi-
ated by generating a first TMD (GRID_TMD) 501 in memory
204. The first TMD 501 may initialize the pending counter
field 480 to one to indicate that the work associated with the
task has not been completed. The first task corresponds to a
grid of CTAs configured to perform a set of work. Again, each
CTA is a group of threads configured to perform work on a set
of'data. At some point within one or more threads in the CTA,
the program instructions for the thread may be configured to
spawn (i.e., generate) one or more child tasks. The child tasks
may perform work that produces an intermediate result that
can be used by the threads of the parent task. Once the child
tasks have been generated in the memory 204, then the
threads of the parent task should be stalled while the child
tasks are complete. However, when the parent task is stalled,
the parent task should be evicted from the SM 250 such that
the newly pending child tasks can be allocated resources,
such as a processor (i.e., and SM 250) on which to be
executed. Otherwise, the PPU 200 could quickly become
deadlocked when all of the SMs 250 executing stalled tasks
are idle and the tasks that the stalled tasks are waiting to
complete have no resources on which to be processed.

In one embodiment, the parent task may initialize a con-
tinuation task that includes the work from the parent task that
is executed after the child tasks have completed execution. As
shown in FIG. 5A, the continuation task may be associated
with a second TMD (i.e., QUEUE_TMD) 511 that is similar
to the first TMD 501. However, unlike the first TMD 501, the
second TMD 511 corresponds to a special type of task, which
can receive additional CTAs for execution after the task has
been launched. In other words, the size or dimensions of the
QUEUE_TMD 511 are not necessarily specified before the
task is launched. The special type of task may be referred to
herein as a queue task. In addition to the second TMD 511, the
queue task is also associated with a circular FIFO (i.e., queue)
512 that is stored in memory 204. The queue 512 holds a
plurality of entries that include pointers to CTAs associated
with the task. Unlike the first TMD 501 that includes pointers
to a grid of CTAs that are fully defined in the memory 204
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when the parent task is launched, the second TMD 511
includes a pointer to the queue 512 that may or may not
include pointers to one or more CTAs when the continuation
task is launched.

In one embodiment, when a logical task is generated by
software, the software generates both a grid TMD 501 and a
queue TMD 511 in memory 204. The grid TMD 501 may
store the state associated with a defined grid of CTAs for the
task. The queue TMD 511 is generated to store continuation
work that is to be completed after one or more child tasks have
been launched and returned intermediate values to be pro-
cessed by the parent task. The queue 512 may also be gener-
ated in the memory 204 which provides a place for the threads
in the parent task to insert CTAs that represent the work that
needs to be restored when the one or more child tasks have
been completed. In another embodiment, the grid TMD 501
may be initialized and launched and the queue TMD 511 is
only initialized once the task corresponding to the grid TMD
501 has reached an instruction to spawn a child task.

As the threads of a CTA in the parent task execute, the
threads may come to a set of instructions that are configured
to generate one or more child tasks to perform some interme-
diate work. The threads generate the one or more child tasks
by initializing additional TMDs (not shown in FIG. 5A) in the
memory 204. Then, the threads in the CTA in the parent task
may generate new CTAs to be added to the queue TMD 511.
The threads may create a new CTA in memory 204 and add a
pointer to the new CTA to the queue 512. The new CTAs
represent the work to be restored from the CTAs in the parent
task once the child tasks have been executed. In other words,
the new CTAs include the instructions from the original CTAs
that would be executed after the child tasks have been com-
pleted. The pointers are stored in the entries (e.g., 521, 522,
523) of the queue 512. Once the CTA in the parent task has
completed these tasks, the parent task may be evicted from the
SM 250. It will be appreciated that multiple CTAs in the grid
of the parent task may spawn different child tasks and may
generate associated new CTAs that are added to the queue
512.

When each of the CTAs in the grid TMD 501 have finished
executing and have spawned the one or more child tasks, the
task associated with the grid TMD 501 is complete and
evicted from the SM 250. However, the logical task (i.e., the
work encompassing the instructions to be executed after the
child tasks have completed execution) is not complete, and
therefore the semaphores (i.e., the one or more semaphores
referenced by the semaphores field 470 in the grid TMD 501)
for the parent task should not be released. In order to prevent
the TMU 215 from releasing the semaphores, the TMU 215 is
configured to clean up the task and release any semaphores
only once the pending counter field 480 for the grid TMD 501
reaches zero. When the task associated with the grid TMD
501 is evicted from the SM 250, the TMU 215 decrements the
value in the pending counter field 480 by one. However, when
a thread block associated with the parent task generates a
continuation thread block that is added to the queue 512, the
pending counter field 480 in the grid TMD 501 is incremented
by one. Therefore, the value in the pending counter field 480
in the grid TMD 501 is incremented from one to two. Alter-
natively, the thread block may generate a message that is
passed to the TMU 215 that causes the TMU 215 to increment
the pending counter field 480 in the grid TMD 501 by one.
Therefore, when the grid TMD 501 is evicted from the SM
250, the TMU 215 will decrement the pending counter field
480 to a value that is greater than zero as long as there is still
pending work associated with the corresponding queue TMD
511 waiting on results returned from the one or more child
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tasks. When the grid TMD 501 is evicted from the SM 250,
the value in the pending counter field 480 in the grid TMD 501
is decremented from a value of two to one.

FIG. 5B illustrates a set of child tasks launched by the
threads of a parent task, in accordance with one embodiment.
As shown in FIG. 5B, a parent task is initiated by generating
a grid TMD 501 in the memory 204. The pending counter
field 480 is initialized to one at the time when the parent task
is launched. As a part of the logical task, a queue TMD 511
associated with the grid TMD 501 is also generated in the
memory 204. One or more CTAs representing work to be
completed by the parent task are included in a grid and asso-
ciated with the grid TMD 501. As the CTAs in the grid are
executed by an SM 250, the instructions may cause one or
more child tasks to be launched to perform some intermediate
work. As shown in FIG. 5B, each child task may be initiated
by generating a grid TMD (e.g., 531, 532, 541, etc.) in the
memory 204. A pending counter field 480 for each child task
may also be initialized to one. In one embodiment, for each
child task created, the pending counter field 480 for the grid
TMD 501 is incremented by one. Thus, for the three child
tasks generated in FIG. 5B, the pending counter field 480 of
the grid TMD 501 is incremented from one to four. In addi-
tion, the CTA of'the parent task may also generate one or more
additional CTAs that represent continuation work that is to be
performed when all of the child tasks have completed their
work. The one or more additional CTAs may be added to the
entries of the queue 512 (e.g., entry 521, 522, 523, etc.) and
the pending counter field 480 of the grid TMD 501 is incre-
mented accordingly.

In one embodiment, the CTAs associated with the parent
task may generate instructions included in the continuation
thread blocks that, when executed by the SM 250, cause the
pending counter field 480 of the grid TMD 501 to be decre-
mented by one. Thus, when each continuation thread block is
added to the queue 512, the pending counter field 480 of the
grid TMD 501 is incremented, and when each continuation
thread block has completed execution within the SM 250, the
pending counter field 480 of the grid TMD 501 is decre-
mented. In another embodiment, the pending counter field
480 of the grid TMD 501 is incremented only one time when
one or more continuation thread blocks are added to the queue
512. The last CTA added to the queue 512 includes instruc-
tions for decrementing the pending counter field 480 of the
grid TMD 501. Thus, instead of incrementing the pending
counter field 480 for the grid TMD 501 once per each con-
tinuation thread block and decrementing the pending counter
field 480 for the grid TMD 501 when each continuation thread
block has finished executing, the pending counter field 480 is
only incremented and decremented one time when continua-
tion work is added to the queue 512 and when all continuation
work has finished execution (i.e., when the task associated
with the queue TMD 511 is finished executing).

As also shown in FIG. 5B, one or more of the child tasks
may be implemented as part of a stream. A stream is a sequen-
tial ordering of dependent tasks. For example, grid TMD 531
corresponds to a first task in the stream and grid TMD 532
corresponds to a second task in the stream. The second task is
dependent on the first task. In other words, the first task must
finish executing before the second task can be launched. In
one embodiment, the TMU 215 manages dependencies
between tasks using streams. Each TMD may include an
output dependence field 490 that stores a pointer to a depen-
dent task. Similar to the pending counter field 480 which
prevents a task from logical completion until the pending
counter field 480 reaches zero, each TMD may also include an
input dependence field (not explicitly shown) that includes a
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counter that must be zero before a task can be launched. For
example, when a task is created, the input dependence field
may be initialized to one to indicate that software is prevent-
ing the task from launch until software has finished initializ-
ing the state information in the TMD in memory 204. The
input dependence field can also be incremented one time for
each action that must be completed before the task may be
launched. For example, the second task in the stream (i.e., the
task corresponding to grid TMD 532) may include an input
dependence field initialized to two—one for a software hold
that prevents the task from being launched until software has
completely filled out the grid TMD 532 and one for a hard-
ware hold that prevents the task from being launched until the
first task in the stream (i.e., the task corresponding to the grid
TMD 531) has completed execution. The output dependence
field 490 of the grid TMD 531 corresponding to the first task
in the stream includes a pointer to the grid TMD 532 corre-
sponding to the second task in the stream that causes the TMU
215 to decrement the input dependence field of the grid TMD
532 corresponding to the second task in the stream when the
first task in the stream has completed execution. If no other
tasks are dependent upon the completion of the execution of
a task, then the output dependence field 490 in the TMD
corresponding to the task may include a null pointer.

FIG. 5C illustrates a mechanism for signaling the comple-
tion of all child tasks, in accordance with one embodiment.
When child tasks are created, the task associated with the
queue TMD 511 is stalled until all of the child tasks have
finished execution. In order to signal that each of the child
tasks has completed execution, a special placeholder TMD
551 is generated, referred to herein as the end-of-child (EOC)
TMD 551. The EOC TMD 551 is a placeholder TMD data
structure that is executed when all of the child tasks have
completed execution. In one embodiment, the task associated
with the EOC TMD 551 is not launched by the TMU 215 until
each of the child tasks have completed execution because the
input dependence field is not decremented to zero until every
child task has completed execution. The input dependence
field (not shown) of the EOC TMD 551 may be incremented
by one each time a TMD for a child task is generated in the
memory 204. An output dependence field 490 in the TMD for
each of the child tasks may be initialized with a pointer to the
EOC TMD 551. For example, the output dependence field
490 of a grid TMD 531 for a first child task and the output
dependence field 490 of a grid TMD 541 for a second child
task may each contain a pointer to the EOC TMD 551. In
addition, for each child task, the input dependence field of the
EOC TMD 551 may be incremented by one. As each child
task is completed, the TMU 215 decrements the input depen-
dence field of the EOC TMD 551. Thus, when all child tasks
have finished execution, the input dependence field of the
EOC TMD 551 stores a value of zero and the task associated
with the EOC TMD 551 may be executed.

In one embodiment, the task associated with the EOC
TMD 551 is launched on an SM 250 and one or more instruc-
tions are executed related to finishing execution of all of the
child tasks. For example, the one or more instructions may
perform some memory resource cleanup operations, deallo-
cating the memory used for the TMDs corresponding to the
child tasks. In another embodiment, the task associated with
the EOC TMD 551 may be completely executed by the TMU
215 and the task is never launched on an SM 250.

As shown in FIG. 5C, when the task associated with the
EOC TMD 551 is finished executing, the TMU 215 decre-
ments the input dependence field in the TMD pointed to by
the pointer in the output dependence field 490 of the EOC
TMD 551. The output dependence field 490 of the EOC TMD
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551 may point to the queue TMD 511 that represents the
continuation thread blocks generated by the thread blocks of
the parent task. When the TMU 215 decrements the input
dependence field of the queue TMD 511, the value of the
input dependence field may go to zero, thereby allowing the
TMU 215 to launch the CTAs in the queue 512 on the SMs
250 and completing the execution of the logical task that
encompasses both the parent task and the continuation task.

FIGS. 6A and 6B illustrate a flowchart of a method 600 for
scheduling tasks associated with continuation thread blocks,
in accordance with another embodiment. The method 600
begins with steps 102, 104, and 106 of method 100, set forth
above. At step 602, one or more child task metadata data
structure (e.g., grid TMD 531, 532, 541, etc.) are generated in
the memory 204. At step 604, an input dependence field in the
second task metadata data structure is incremented. In one
embodiment, the input dependence field is incremented once
and represents each of the one or more child tasks as a group.
In another embodiment, the input dependence field is incre-
mented once for each child task of the one or more child tasks
generated in the memory 204. At step 606, a third task meta-
data data structure is generated in the memory 204. The third
metadata data structure represents the EOC TMD 551 that
indicates when each of the one or more child tasks has fin-
ished execution.

At step 608, an input dependence field in the third task
metadata data structure is incremented for each child task in
the one or more child tasks. At step 610, an output dependence
field in the task metadata data structures for each of the one or
more child tasks is modified to include a pointer to the third
task metadata data structure. At step 612, a pointer to the
second task metadata data structure (e.g., queue TMD 511) is
stored in an output dependence field of the third task metadata
data structure (e.g., the EOC TMD 551). In addition, an input
dependence field in the second task metadata structure is
incremented by one. At step 614, an input dependence field in
the second task metadata data structure (e.g., the queue TMD
511) is decremented after the one or more child tasks have
finished execution. In other words, when each of the child
tasks has finished executing, the task corresponding to the
EOC TMD 551 may be launched, which causes the input
dependence field of the queue TMD 511 to be decremented.
As the input dependence field of the queue TMD 511 reaches
zero, the continuation task may be launched at step 110,
described above. The method then proceeds to step 112, as set
forth above in conjunction with FIG. 1.

It will be appreciated that the use of incremented and
decremented are interchangeable in alternative embodi-
ments. For example, a specific value other than zero may be
used to determine when tasks can be launched, such as 1000.
Then when child tasks are generated, the value may be dec-
remented (e.g., from 999 to 998). When child tasks complete
execution, the value may be incremented (e.g., from 999 to
1000). Thus, incremented, as used herein, may mean adding
one to a value or subtracting one from the value and decre-
mented may mean the opposite of incremented (i.e., subtract-
ing one to a value or adding one to the value, respectively).

FIG. 7 illustrates an exemplary system 700 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a sys-
tem 700 is provided including at least one central processor
701 that is connected to a communication bus 702. The com-
munication bus 702 may be implemented using any suitable
protocol, such as PCI (Peripheral Component Interconnect),
PCI-Express, AGP (Accelerated Graphics Port), HyperTrans-
port, or any other bus or point-to-point communication pro-
tocol(s). The system 700 also includes a main memory 704.
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Control logic (software) and data are stored in the main
memory 704 which may take the form of random access
memory (RAM).

The system 700 also includes input devices 712, a graphics
processor 706, and a display 708, i.e. a conventional CRT
(cathode ray tube), LCD (liquid crystal display), LED (light
emitting diode), plasma display or the like. User input may be
received from the input devices 712, e.g., keyboard, mouse,
touchpad, microphone, and the like. In one embodiment, the
graphics processor 706 may include a plurality of shader
modules, a rasterization module, etc. Each of the foregoing
modules may even be situated on a single semiconductor
platform to form a graphics processing unit (GPU). Tech-
niques for scheduling continuation thread blocks, described
above, may be implemented on the graphics processor 706 of
FIG. 7.

In the present description, a single semiconductor platform
may refer to a sole unitary semiconductor-based integrated
circuit or chip. It should be noted that the term single semi-
conductor platform may also refer to multi-chip modules with
increased connectivity which simulate on-chip operation, and
make substantial improvements over utilizing a conventional
central processing unit (CPU) and bus implementation. Of
course, the various modules may also be situated separately
or in various combinations of semiconductor platforms per
the desires of the user.

The system 700 may also include a secondary storage 710.
The secondary storage 710 includes, for example, a hard disk
drive and/or a removable storage drive, representing a floppy
disk drive, a magnetic tape drive, a compact disk drive, digital
versatile disk (DVD) drive, recording device, universal serial
bus (USB) flash memory. The removable storage drive reads
from and/or writes to a removable storage unit in a well-
known manner.

Computer programs, or computer control logic algorithms,
may be stored in the main memory 704 and/or the secondary
storage 710. Such computer programs, when executed,
enable the system 700 to perform various functions. The
memory 704, the storage 710, and/or any other storage are
possible examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the central processor 701, the graphics processor
706, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the central processor
701 and the graphics processor 706, a chipset (i.e., a group of
integrated circuits designed to work and sold as a unit for
performing related functions, etc.), and/or any other inte-
grated circuit for that matter.

Still yet, the architecture and/or functionality of the various
previous figures may be implemented in the context of a
general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired system.
For example, the system 700 may take the form of a desktop
computer, laptop computer, server, workstation, game con-
soles, embedded system, and/or any other type of logic. Still
yet, the system 700 may take the form of various other devices
including, but not limited to a personal digital assistant (PDA)
device, a mobile phone device, a television, etc.

Further, while not shown, the system 700 may be coupled
to a network (e.g., a telecommunications network, local area
network (LAN), wireless network, wide area network (WAN)
such as the Internet, peer-to-peer network, cable network, or
the like) for communication purposes.

While various embodiments have been described above, it
should be understood that they have been presented by way of
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example only, and not limitation. Thus, the breadth and scope
of'a preferred embodiment should not be limited by any ofthe
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.
What is claimed is:
1. A method comprising:
generating a first task metadata data structure in a memory;
generating a second task metadata data structure in the
memory, wherein the second task metadata data struc-
ture is related to the first task metadata data structure;

executing a first task corresponding to the first task meta-
data data structure in a processor, wherein at least one
instruction in the first task causes one or more child tasks
to be executed by the processor;

generating state information representing a continuation

task related to the first task and storing the state infor-
mation in the second task metadata data structure;
executing the continuation task in the processor after the
one or more child tasks have finished execution; and
indicating that the first task has logically finished execution
when the continuation task has finished execution,
wherein the continuation task comprises one or more
instructions that are dependent on at least one interme-
diate value produced by the one or more child tasks.
2. The method of claim 1, wherein indicating that the first
task has logically finished execution comprises decrementing
a pending counter field in the first task metadata data struc-
ture.
3. The method of claim 2, wherein indicating that the first
task has logically finished execution further comprises releas-
ing one or more semaphores associated with the first task.
4. The method of claim 1, further comprising:
incrementing an input dependence field in the second task
metadata data structure for each child task in the one or
more child tasks that is spawned by the first task; and

decrementing the input dependence field in the second task
metadata data structure when each child task in the one
or more child tasks finishes execution.

5. The method of claim 1, further comprising:

generating a third task metadata data structure that repre-

sents a task that indicates that each of the one or more
child tasks has finished execution; and

incrementing an input dependence field in the third task

metadata data structure for each child task in the one or
more child tasks that is spawned by the first task.

6. The method of claim 5, further comprising:

incrementing an input dependence field in the second task

metadata data structure; and

storing a pointer to the second task metadata data structure

in an output dependence field of the third task metadata
data structure.
7. The method of claim 6, further comprising:
executing a third task corresponding to the third task meta-
data data structure in response to each of the child tasks
in the one or more child tasks finishing execution; and

decrementing the input dependence field in the second task
metadata data structure when the third task has finished
execution.

8. The method of claim 1, wherein each of the task meta-
data data structures comprises a plurality of fields including a
pending counter field.

9. The method of claim 1, wherein each task comprises at
least one thread block including a plurality of threads
executed in parallel on two or more processing units.

10. The method of claim 1, wherein the second task meta-
data data structure comprises a queue metadata data structure.
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11. The method of claim 10, further comprising generating
a queue data structure in the memory, wherein the queue data
structure is associated with the second task metadata data
structure.
12. The method of claim 11, wherein the queue data struc-
ture comprises a circular queue having a plurality of entries,
each entry configured to store a pointer to a thread block.
13. A non-transitory computer-readable storage medium
storing instructions that, when executed by a processor, cause
the processor to perform steps comprising:
generating a first task metadata data structure in a memory;
generating a second task metadata data structure in the
memory, wherein the second task metadata data struc-
ture is related to the first task metadata data structure;

executing a first task corresponding to the first task meta-
data data structure in a processor, wherein at least one
instruction in the first task causes one or more child tasks
to be executed by the processor;

generating state information representing a continuation

task related to the first task and storing the state infor-
mation in the second task metadata data structure;
executing the continuation task in the processor after the
one or more child tasks have finished execution; and
indicating that the first task has logically finished execution
once the continuation task has finished execution,
wherein the continuation task comprises one or more
instructions that are dependent on at least one interme-
diate value produced by the one or more child tasks.
14. The non-transitory computer-readable storage medium
of claim 13, the steps further comprising:
incrementing an input dependence field in the second task
metadata data structure for each child task in the one or
more child tasks that is spawned by the first task; and

decrementing the input dependence field in the second task
metadata data structure when each child task in the one
or more child tasks finishes execution.

15. The non-transitory computer-readable storage medium
of claim 13, the steps further comprising:

generating a third task metadata data structure that repre-

sents a task that indicates that each of the one or more
child tasks has finished execution; and

incrementing an input dependence field in the third task

metadata data structure for each child task in the one or
more child tasks that is spawned by the first task.
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16. A system, comprising:
a memory; and
a processor coupled to the memory and configured to:
generate a first task metadata data structure in a memory,
generate a second task metadata data structure in the
memory, wherein the second task metadata data struc-
ture is related to the first task metadata data structure,
execute a first task corresponding to the first task meta-
data data structure in a processor, wherein at least one
instruction in the first task causes one or more child
tasks to be executed by the processor,
generate state information representing a continuation
task related to the first task and storing the state infor-
mation in the second task metadata data structure,
execute the continuation task in the processor after the
one or more child tasks have finished execution, and
indicate that the first task has logically finished execu-
tion once the continuation task has finished execution,
wherein the continuation task comprises one or more
instructions that are dependent on at least one inter-
mediate value produced by the one or more child
tasks.
17. The system of claim 16, the processor further config-
ured to:
increment an input dependence field in the second task
metadata data structure for each child task in the one or
more child tasks that is spawned by the first task, and
decrement the input dependence field in the second task
metadata data structure when each child task in the one
or more child tasks finishes execution.
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18. The system of claim 16, the processor further config-
ured to:

35 generate a third task metadata data structure that represents

a task that indicates that each of the one or more child
tasks has finished execution; and
increment an input dependence field in the third task meta-
data data structure for each child task in the one or more
child tasks that is spawned by the first task.
19. The system of claim 16, wherein the processor com-
prises a graphics processing unit.
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